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We study self-avoiding walkéSAW'’s) on the generalized Sierpinski gasket family of fractals. Each fractal

can be labeled by an integbr(2<b=), so that the
value 2 wherb—oc. By using an exact enumeration

fractal and spectral dimensions tend to the Euclidean
technique to obtain the series expansion for the chain-

generating function of SAW’s on these lattices, we calculate the associated critical expgniemt2<b
<100. The largds behavior ofy, is the first numerical result consistent with the asymptotic convergence

toward the Euclidean value/e. We also give an
limp_»Yp,— ve - [S1063-651X98)14008-4

PACS numbeg(s): 64.60.Ak

I. INTRODUCTION

analytic argument supporting the assumption that

The critical behavior of SAW's on the GSG family has
recently been studied by series expansion mefliddThe

Recently, increased attention has been focused on the lineritical fugacity u,, was numerically estimated, and it was
iting behavior of the critical properties of statistical systemsfound thatw,, tends to the triangular value; whenb— oo,
on fractals when underlying fractal geometrical parameters However, the asymptotic behavior of critical exponents is

such as the fractal{g) or spectral Dg) dimensions ap-

still a controversial issue. SAW'’s were studied on other frac-

proach the Euclidean values. This convergence is not ertal families which are considered to belong to the same uni-
sured, because in order to obtain the critical properties of anyersality class as the generalized Sierpinski gasket family

statistical system on a fractal familfabeled byb), one
should analyze the results in the thermodynamic linht (
— ) for eachb, while the critical properties on the limiting
Euclidean lattice is obtained when the geometrical linbit (
— ) is takenbeforethe thermodynamic limit.

In this work we study the critical behavior of self-
avoiding walks(SAW'’s) on a family of regular fractals em-

studied here. Numerical results for the critical exponents
and v, were obtained via the Monte Carlo renormalization
group (MCRG) for b<80[2]. Although the range ob was
not sufficiently large to allow a numerical estimate of the
asymptotic behavior, the results aof, and v, exhibit a
monotonic behavior wittb that depart from the respective
Euclidean values ¥=1.34 andvg=0.75) asb increases.

bedded in the two-dimensional Euclidean space, the genera®n the other hand, finite-size scalit§SS argumentd 3]

ized Sierpinski gasket§&GSG’s. Each member of the fractal
family is labeled by an integdy=2, and can be obtained as

the result of an infinite iterative process in which a triangular

structure is enlarged times and a generator is reproduced in

b(b+1)/2 smallest triangles of the enlarged structure. The

generator is the initial structurgee, for instance, Fig. 1 of
Ref.[1]). For this fractal family, bottD andD g tends to the
Euclidean value 2 wheh— .

We present results fdr<100 based on the series expan-

sion method. The series expansion technique gives the mo
reliable results for the Euclidean lattices. This suggests the

importance of extending it for fractal lattices.
We consider the chain-generating function for SAW’s on
a particular fractal,

©

Co(X)= 2, cn(b)X",

n=1

1)

where c,(b) is the number of distinch-step SAW's per
number of sites of the lattice and the fugacity, is the
weight factor for each step. Near a critical fugacity,

Cp(X)~(X=Xc) ™7, 2
wherey, is the critical exponent and,=(x.) ! is the con-
nective constant.
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FIG. 1. Plot of Irc,(b) vs n for b=2, 5, 40, and 100, respec-
tively. For comparison, we plot the adjusted cuf\e A,+nlin w,
+(w—1)Inn] vsn.
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TABLE |. Density of n-step SAW’sc,,(b) for the fractal lattices 4.2 T e e L s e s
labeled byb=8 and 80. Mo ]
b n c(b) 4r B
8 1 7560/1512 i ]
8 2 31752/1512 3.8 - % 7
8 3 121632/1512 B ?% i
8 4 449568/1512 1& 36 % _
8 5 1622670/1512 o b
8 6 5741022/1512 - i
8 7 19885110/1512 3.4 —
8 8 2429613144/54432 - i
8 9 8076704832/54432 39 r N
8 10 26308558584/54432 T ~
8 11 84118535424/54432 i ]
8 12 264733395192/54432 gl Lo Lol o1
8 13 823003590024/54432 0 0.005 001 0.015 0.02
8 14 2537259389280/54432 1/b2
8 15 1787438864352/54432 FIG. 2. Plot ofuy, vs 1b? The results of the present work are
8 16 23885916609744/54432 )
denoted by1. We also plot for comparison the results of Rf],
80 1 62966160/10750320 denoted byO. Convergence toward the triangular value is ob-
80 2 308687760/10750320 served.
80 3 1394494728/10750320
80 4 6137824104/10750320 The critical behavior ofc,(x) [Eq. (2)] is then analyzed
80 5 26666991150/10750320 from the n,,, order series expansions obtained. This tech-
80 6 114839951646/10750320 nique was successful in predicting the latgbehavior ofw,
80 7 491059627350/10750320 toward pt with good accuracyl]. We present a numerical
80 8 2089451131974/10750320 analysis ofc,(b) which leads to the evaluation of bojk,
80 9 8855701290984/10750320 and vy .
80 10 37414379751984/10750320 From the series expansion of E®), c,(b) may be writ-
80 11 157666123368396/10750320 ten as
80 12 662982179959008/10750320 B N1
80 13 2782741988780340/10750320 Cn(D)=Apupn ™ "Fy(n), )
where A, is a constant and li;p,..F,(n)=1 for eachb.
suggest that lig,..v,= vg but limy_, ., y,=4.15, rather dif- Then
ferent from the value ofyg quoted above. Nevertheless, the In cy(b)=Ry+Syn+Tyln n+ep(n), (4)
FSS results were based on hypothesis which, until now, have
not been proved or numerically tested. with
Our aim here is to investigate the statistic of SAW'’s using
the series expansion method to analyze the limiting behavior Rp=In Ay,
of y, asb—w. We use a graph counting method that pro-
vides an exact analytical recursion relation between the num- Sp=In wy,
ber of embeddings af-step SAW'’s in consecutive stages of (5)

the iterative process of construction of the fractal latfitk Tp=w—1,

In the limit of infinite iterations, that gives thexactdensity
of n-step distinct SAW<,,(b) (averaged over all possible ep(n)=InFy(n).

starting pointg for each infinite fractal lattice labeled hy . . .
Contrary to previous findings, to our knowledge we obtainAS '"T‘nw'“ Fy(n)=0, we considers,(n) as a correction
the first numerical results consistent with Jim,v,= ye. term in Eq.(4). The parameterR;, S,, andT, are chosen
We also give analytical arguments supporting this converpy least-square fit in order to minimize the error,

gence based on the largezontribution of the series expan- o
sion of the chain-generating function near criticality. e= %nZl [ep(N)]2. (6)

Il. NUMERICAL RESULTS . . . .
As an illustration, in Fig. 1 we plot la,(b) versusn for b

We have exactly evaluated,(b) in (1) for n<ng,, =2,5, 40, and 100, and, for comparison, we plot the ad-
where 13<n,,,,=20 for 2<b=<100. In Table | we present as justed curve R,+Sy;n+Tylnn) versusn with the best-fit

an illustrationc,(b) for b=8, 1<n<16, and forb=80, 1 = parameters. The agreement is rather good.
sn<13. In Fig. 2 we plotu,, versus 12 [Previously it has been
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3 [ T T T 7T T T T T T ] Rbi'i+sb)-()‘i)+Tb)_/)'i:Zb'I,
- . Rol:-X+SX- X+ Tpy-X=Zp- X,
25 — — . - N . e o o
- . Rpl-y+SpX-y+Tpy y=2Zp-Y,
B 7 or, in matrix notationUX,=Y,, with
2 — — - -
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FIG. 3. Plot ofy, vs 1b. We also plot the Euclidean valug: . As 1, x, andy are linearly independent) is invertible:

—11-1
shown that the first correction term b)/is null [1]). The Xo=U"Np. ©
error bars were obtained from the standard deviation of the The critical properties of SAW’s are obtained when the
best-fit parameterS, when one considers different setsof  ymper of steps— . The existence oX,, in this limit can
values to find the adjusted curve. This plot shows the conpe settied from the following arguments. Considering a cut-
vergence ofuy, toward ut whenb is sufficiently large. The 4t N, one can rewritdJ as
decrease of error bars dsincreases signs that the series
expansions become well behavigde convergence is fasjer
as the underlying fractal lattices approaches the uniform Eu-
clidean lattice.

In Fig. 3, we ploty, versus 1. The error bars were
obtained analogously from the standard deviation of the best-
fit parameterd,. For b=<8 the numerical estimates include
the exact resultg4], and forb>20 they, values are smaller
than yg, deviating at most 10% fronyg . From this plot, it
is not possible to ensure the convergence of the numerical
estimates ofy, toward the Euclidean valuge asb—x, but, 114 largest element df is =N_,n?~N3. Then
given that the deviations are small, one can expect that the n=1
convergence toe from below actually occurs. The conver- lU[|=N3=]lU~Y|<N~3, (10)
gence of the connective constant of the GSG fartalyon-
universal parametgrsettled by the series expansion tech-On the other hand, from Eg8),
nique gives further support to this conjecture.
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IIl. ANALYTIC RESULTS FOR THE EUCLIDEAN LIMIT 2

+

N

2
> nin cn(b))

N
We now present a theoretical argument supporting that nzl In c,(b)
asymptoticallyy, should tend toyg. Consider Eq(4) and

the vectors(note that onlyZ, depends orb)

n=1

N 2
+ Zl InnIn cn(b)) . (12)

x=(1,2,...0n,...),
From the largest contribution in E¢L1),

§E(In 1in2...,Inn,...), N

; @ [[Ypl|~ > nIncy(b)~N?, (12)
Z,=(In c1(b),In cy(b), ... ,Incy(b), ...), =1

> where from Eq(4), we have used that I, (b)~n for largen.

=L oL, From Egs.(9), (10), and (12), we conclude thai, is

_ _ _ R finite in the thermodynamic limil— . Once Eq(9) is well
Error (6) is e=3 ||Z,—Ry1—Syx—Tpy|[%. To minimize  defined in the critical regime for each fractal labeledopyve
€, one should solve the system perform the Euclidean limit
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lim Xp=limU~ty,=U"tlimY,,

b0

13

b— o b—w

whereU is b independent.

In Ref.[1], it was obtained that lig1,..c,(b) =c,(T), the
density of SAW's of the underlying triangular lattice. Using
Egs. (7) and (8), then lim,_...Y,=Yt, the corresponding
value of the triangular lattice. Finally, from E¢L3),

lim X,=U"1Y;=X7,

b—o

14

with Xt given by Eq.(8) with triangular parameteR;, Sy,
andTr.
Consequently, from Egq$5) and(14),

lim u,=pr and limy,=ye.

b—o b—oo

IV. DISCUSSION
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at most 10% fromyg, displaying a behavior in accordance
with our analytic prediction.

In fact, to our knowledge this is the first numerical result
showing this trend. Previous numerical findifitjs based on
MCRG simulations of %10 walks for b<80, providey,
estimates that departs frogi asb increases. However, mul-
tiplying the number of sites of the fractal generator
[Ng=(b+1)(b+2)/2]—where the simulations were per-
formed by our exact results for the densityretep SAW'’s
cy(b), shown in Table I, one finds that the numbemedtep
SAW’s grows a?c,(b) which is very large compared with
the number of Monte Carlo realizations, especially for large
b. This could explain the disagreement between the MCGR
results and the present work for large

From the MCGR data is not possible to obtain any limit-
ing value for y, whenb—o. Although the authors argue
that their results would be consistent with the limiting value
ves=4.15 provided by a FSS hypothedi8], the largest
value found in the simulations wag=2.2, which means a

The convergenge of critical exponents on fractals to thos&0% deviate from the conjectured asymptotic value. In ad-
on uniform integer dimensionsal lattices is quite subtle, aslition, the MCRG results for,, seems inconsistent with the
explained in the text. In this work, we present results for thdimiting value vgs= v provided by the same FSS hypoth-

connective constant, and for the critical exponeny,, of

SAW’s on a family of fractals that approaches the triangular

lattice asymptotically ap—oo.

The SAW statistic is evaluated directly on the GSG fam-
ily. Previous results in the literature regarding critical expo-

esis. These controversial results call for additional studies.
Our numerical estimates qi,, and vy, rely upon series
expansions that are exact order by order. Each term of order
n is obtained from an exact counting ¢f(b) for each infi-

nite fractal lattice labeled by. This means that the SAW

nents for these lattices were obtained from other fractal famistatistics is calculated taking into account the existence of
lies which are supposed to belong to the same universalitiacunas of all length scales, capturing the full geometry, in
class. For this reason they were not be able to provide esteontrast with MC results that suffer from finite-size effects.

mates foru, which is a nonuniversal parameter.

Finally, the series expansion method gives the most reli-

We present analytic arguments supporting the converable results for Euclidean lattices. This gives confidence in

gence lim_ .up=p7 and lim,_ . yp=7ye. Our numerical
estimates fou,, clearly shows that lig, ..up= u7, the con-

the results based on the extension of this method for fractals.

The finite-size scaling predictions are based on a hypoth-

nective constant of the underlying triangular lattice. Fromesis regarding the dependence of critical quantitieb tmat
this, one can expect the analogous numerical convergence bés not been proved so far for the fractals families studied

the critical exponent.

Although the numerical estimates gf were obtained for
a large range ab (b=<100), it was not sufficient to establish
the numerical convergence of, toward yg. That means

here. On the other hand, our analytic arguments are per-

formed on a firm mathematical basis.

The results presented here leads to the conclusion that the

critical behavior of SAW'’s on the SGS family of fractals

that we have not reached the asymptotic regime, whiclshows a uniform convergence to the Euclidean behavior as
would occur for largeb. Nevertheless, our values deviate by b— .
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