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Critical behavior of the chain-generating function of self-avoiding walks
on the Sierpinski gasket family: The Euclidean limit
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Departamento de Fı´sica, Pontifı´cia Universidade Cato´lica do Rio de Janeiro, Caixa Postal 38071, 22452-970 Rio de Janeiro, RJ, Br
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We study self-avoiding walks~SAW’s! on the generalized Sierpinski gasket family of fractals. Each fractal
can be labeled by an integerb (2<b<`), so that the fractal and spectral dimensions tend to the Euclidean
value 2 whenb→`. By using an exact enumeration technique to obtain the series expansion for the chain-
generating function of SAW’s on these lattices, we calculate the associated critical exponentgb for 2<b
<100. The large-b behavior ofgb is the first numerical result consistent with the asymptotic convergence
toward the Euclidean valuegE . We also give an analytic argument supporting the assumption that
limb→`gb→gE . @S1063-651X~98!14008-4#

PACS number~s!: 64.60.Ak
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I. INTRODUCTION

Recently, increased attention has been focused on the
iting behavior of the critical properties of statistical syste
on fractals when underlying fractal geometrical parame
such as the fractal (DF) or spectral (DS) dimensions ap-
proach the Euclidean values. This convergence is not
sured, because in order to obtain the critical properties of
statistical system on a fractal family~labeled byb), one
should analyze the results in the thermodynamic limitN
→`) for eachb, while the critical properties on the limiting
Euclidean lattice is obtained when the geometrical limitb
→`) is takenbeforethe thermodynamic limit.

In this work we study the critical behavior of sel
avoiding walks~SAW’s! on a family of regular fractals em
bedded in the two-dimensional Euclidean space, the gen
ized Sierpinski gaskets~GSG’s!. Each member of the fracta
family is labeled by an integerb>2, and can be obtained a
the result of an infinite iterative process in which a triangu
structure is enlargedb times and a generator is reproduced
b(b11)/2 smallest triangles of the enlarged structure. T
generator is the initial structure~see, for instance, Fig. 1 o
Ref. @1#!. For this fractal family, bothDF andDS tends to the
Euclidean value 2 whenb→`.

We present results forb<100 based on the series expa
sion method. The series expansion technique gives the m
reliable results for the Euclidean lattices. This suggests
importance of extending it for fractal lattices.

We consider the chain-generating function for SAW’s
a particular fractal,

Cb~x!5 (
n51

`

cn~b!xn, ~1!

where cn(b) is the number of distinctn-step SAW’s per
number of sites of the lattice andx, the fugacity, is the
weight factor for each step. Near a critical fugacityxc ,

Cb~x!;~x2xc!
2gb, ~2!

wheregb is the critical exponent andmb[(xc)
21 is the con-

nective constant.
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The critical behavior of SAW’s on the GSG family ha
recently been studied by series expansion method@1#. The
critical fugacity mb was numerically estimated, and it wa
found thatmb tends to the triangular valuemT whenb→`.

However, the asymptotic behavior of critical exponents
still a controversial issue. SAW’s were studied on other fra
tal families which are considered to belong to the same u
versality class as the generalized Sierpinski gasket fam
studied here. Numerical results for the critical exponentsgb
and nb were obtained via the Monte Carlo renormalizati
group ~MCRG! for b<80 @2#. Although the range ofb was
not sufficiently large to allow a numerical estimate of t
asymptotic behavior, the results ofgb and nb exhibit a
monotonic behavior withb that depart from the respectiv
Euclidean values (gE51.34 andnE50.75) asb increases.
On the other hand, finite-size scaling~FSS! arguments@3#

FIG. 1. Plot of lncn(b) vs n for b52, 5, 40, and 100, respec
tively. For comparison, we plot the adjusted curve@ ln Ab1n ln mb

1(gb21)ln n# vs n.
4001 © 1998 The American Physical Society



e
a

ng
vi
o
um
of

e

in

e
-

s

ch-

l

ad-

e

4002 PRE 58BRIEF REPORTS
suggest that limb→`nb5nE but limb→`gb.4.15, rather dif-
ferent from the value ofgE quoted above. Nevertheless, th
FSS results were based on hypothesis which, until now, h
not been proved or numerically tested.

Our aim here is to investigate the statistic of SAW’s usi
the series expansion method to analyze the limiting beha
of gb as b→`. We use a graph counting method that pr
vides an exact analytical recursion relation between the n
ber of embeddings ofn-step SAW’s in consecutive stages
the iterative process of construction of the fractal lattice@1#.
In the limit of infinite iterations, that gives theexactdensity
of n-step distinct SAWscn(b) ~averaged over all possibl
starting points!, for each infinite fractal lattice labeled byb.
Contrary to previous findings, to our knowledge we obta
the first numerical results consistent with limb→`gb5gE .
We also give analytical arguments supporting this conv
gence based on the large-n contribution of the series expan
sion of the chain-generating function near criticality.

II. NUMERICAL RESULTS

We have exactly evaluatedcn(b) in ~1! for n<nmax,
where 13<nmax<20 for 2<b<100. In Table I we present a
an illustrationcn(b) for b58, 1<n<16, and forb580, 1
<n<13.

TABLE I. Density ofn-step SAW’scn(b) for the fractal lattices
labeled byb58 and 80.

b n cn(b)

8 1 7560/1512
8 2 31752/1512
8 3 121632/1512
8 4 449568/1512
8 5 1622670/1512
8 6 5741022/1512
8 7 19885110/1512
8 8 2429613144/54432
8 9 8076704832/54432
8 10 26308558584/54432
8 11 84118535424/54432
8 12 264733395192/54432
8 13 823003590024/54432
8 14 2537259389280/54432
8 15 7787438864352/54432
8 16 23885916609744/54432

80 1 62966160/10750320
80 2 308687760/10750320
80 3 1394494728/10750320
80 4 6137824104/10750320
80 5 26666991150/10750320
80 6 114839951646/10750320
80 7 491059627350/10750320
80 8 2089451131974/10750320
80 9 8855701290984/10750320
80 10 37414379751984/10750320
80 11 157666123368396/10750320
80 12 662982179959008/10750320
80 13 2782741988780340/10750320
ve
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The critical behavior ofCb(x) @Eq. ~2!# is then analyzed
from the nmax order series expansions obtained. This te
nique was successful in predicting the large-b behavior ofmb
towardmT with good accuracy@1#. We present a numerica
analysis ofcn(b) which leads to the evaluation of bothmb
andgb .

From the series expansion of Eq.~2!, cn(b) may be writ-
ten as

cn~b!5Abmb
nngb21Fb~n!, ~3!

where Ab is a constant and limn→`Fb(n)51 for eachb.
Then

ln cn~b!5Rb1Sbn1Tbln n1«b~n!, ~4!

with

Rb[ ln Ab ,

Sb[ ln mb ,
~5!

Tb[gb21,

«b~n!5 ln Fb~n!.

As limn→`ln Fb(n)50, we consider«b(n) as a correction
term in Eq.~4!. The parametersRb , Sb , andTb are chosen
by least-square fit in order to minimize the error,

«5 1
2 (

n51

`

@«b~n!#2. ~6!

As an illustration, in Fig. 1 we plot lncn(b) versusn for b
52, 5, 40, and 100, and, for comparison, we plot the
justed curve (Rb1Sbn1Tbln n) versusn with the best-fit
parameters. The agreement is rather good.

In Fig. 2 we plotmb versus 1/b2. @Previously it has been

FIG. 2. Plot ofmb vs 1/b2. The results of the present work ar
denoted byh. We also plot for comparison the results of Ref.@1#,
denoted bys. Convergence toward the triangular valuemT is ob-
served.
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shown that the first correction term (1/b) is null @1#!. The
error bars were obtained from the standard deviation of
best-fit parametersSb when one considers different sets ofn
values to find the adjusted curve. This plot shows the c
vergence ofmb towardmT whenb is sufficiently large. The
decrease of error bars asb increases signs that the seri
expansions become well behaved~the convergence is faste!
as the underlying fractal lattices approaches the uniform
clidean lattice.

In Fig. 3, we plotgb versus 1/b. The error bars were
obtained analogously from the standard deviation of the b
fit parametersTb . For b<8 the numerical estimates includ
the exact results@4#, and forb.20 thegb values are smalle
thangE , deviating at most 10% fromgE . From this plot, it
is not possible to ensure the convergence of the nume
estimates ofgb toward the Euclidean valuegE asb→`, but,
given that the deviations are small, one can expect that
convergence togE from below actually occurs. The conve
gence of the connective constant of the GSG family~a non-
universal parameter! settled by the series expansion tec
nique gives further support to this conjecture.

III. ANALYTIC RESULTS FOR THE EUCLIDEAN LIMIT

We now present a theoretical argument supporting
asymptoticallygb should tend togE . Consider Eq.~4! and
the vectors~note that onlyZW b depends onb!

xW[~1,2, . . . ,n, . . . !,

yW[~ ln 1,ln 2, . . . , ln n, . . . !,
~7!

ZW b[„ln c1~b!, ln c2~b!, . . . , ln cn~b!, . . . ),

1W [~1,1, . . . ,1, . . .!.

Error ~6! is «5 1
2 zuZW b2Rb1W 2SbxW2TbyW uz2. To minimize

«, one should solve the system

FIG. 3. Plot ofgb vs 1/b. We also plot the Euclidean valuegE .
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Rb1W •1W 1SbxW•1W 1TbyW•1W 5ZW b•1W ,

Rb1W •xW1SbxW•xW1TbyW•xW5ZW b•xW ,

Rb1W •yW1SbxW•yW1TbyW•yW5ZW b•yW ,

or, in matrix notation,UXb5Yb , with

Xb[S Rb

Sb

Tb

D , Yb[S ZW b•1W

ZW b•1W

ZW b•1W
D ,

~8!

U[S 1W •1W xW•1W yW•1W

1W •xW xW•xW yW•xW

1W •yW xW•yW yW•yW
D .

As 1W , xW , andyW are linearly independent,U is invertible:

Xb5U21Yb . ~9!

The critical properties of SAW’s are obtained when t
number of stepsn→`. The existence ofXb in this limit can
be settled from the following arguments. Considering a c
off N, one can rewriteU as

S (
n51

N

1 (
n51

N

n (
n51

N

ln n

(
n51

N

n (
n51

N

n2 (
n51

N

n ln n

(
n51

N

ln n (
n51

N

n ln n (
n51

N

~ ln n!2

D .

The largest element ofU is (n51
N n2;N3. Then

zuUuz>N3→ zuU21uz<N23. ~10!

On the other hand, from Eq.~8!,

zuYbuz25~ZW b•1!21~ZW b•xW !21~ZW b•yW !2

5S (
n51

N

ln cn~b!D 2

1S (
n51

N

n ln cn~b!D 2

1S (
n51

N

ln n ln cn~b!D 2

. ~11!

From the largest contribution in Eq.~11!,

zuYbuz; (
n51

N

n ln cn~b!;N3, ~12!

where from Eq.~4!, we have used that lncn(b);n for largen.
From Eqs.~9!, ~10!, and ~12!, we conclude thatXb is

finite in the thermodynamic limitN→`. Once Eq.~9! is well
defined in the critical regime for each fractal labeled byb, we
perform the Euclidean limit
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lim
b→`

Xb5 lim
b→`

U21Yb5U21 lim
b→`

Yb , ~13!

whereU is b independent.
In Ref. @1#, it was obtained that limb→`cn(b)5cn(T), the

density of SAW’s of the underlying triangular lattice. Usin
Eqs. ~7! and ~8!, then limb→`Yb5YT , the corresponding
value of the triangular lattice. Finally, from Eq.~13!,

lim
b→`

Xb5U21YT5XT , ~14!

with XT given by Eq.~8! with triangular parametersRT , ST,
andTT .

Consequently, from Eqs.~5! and ~14!,

lim
b→`

mb5mT and lim
b→`

gb5gE .

IV. DISCUSSION

The convergenge of critical exponents on fractals to th
on uniform integer dimensionsal lattices is quite subtle,
explained in the text. In this work, we present results for
connective constantmb and for the critical exponentgb of
SAW’s on a family of fractals that approaches the triangu
lattice asymptotically asb→`.

The SAW statistic is evaluated directly on the GSG fa
ily. Previous results in the literature regarding critical exp
nents for these lattices were obtained from other fractal fa
lies which are supposed to belong to the same univers
class. For this reason they were not be able to provide e
mates formb which is a nonuniversal parameter.

We present analytic arguments supporting the conv
gence limb→`mb5mT and limb→`gb5gE . Our numerical
estimates formb clearly shows that limb→`mb5mT , the con-
nective constant of the underlying triangular lattice. Fro
this, one can expect the analogous numerical convergenc
the critical exponent.

Although the numerical estimates ofgb were obtained for
a large range ofb (b<100), it was not sufficient to establis
the numerical convergence ofgb toward gE . That means
that we have not reached the asymptotic regime, wh
would occur for largerb. Nevertheless, our values deviate
.
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at most 10% fromgE , displaying a behavior in accordanc
with our analytic prediction.

In fact, to our knowledge this is the first numerical res
showing this trend. Previous numerical findings@2#, based on
MCRG simulations of 53106 walks for b<80, providegb

estimates that departs fromgE asb increases. However, mul
tiplying the number of sites of the fractal generat
@NS5(b11)(b12)/2#—where the simulations were pe
formed by our exact results for the density ofn-step SAW’s
cn(b), shown in Table I, one finds that the number ofn-step
SAW’s grows asb2cn(b) which is very large compared with
the number of Monte Carlo realizations, especially for lar
b. This could explain the disagreement between the MC
results and the present work for largeb.

From the MCGR data is not possible to obtain any lim
ing value for gb when b→`. Although the authors argue
that their results would be consistent with the limiting val
gFS.4.15 provided by a FSS hypothesis@3#, the largest
value found in the simulations wasg.2.2, which means a
50% deviate from the conjectured asymptotic value. In
dition, the MCRG results fornb seems inconsistent with th
limiting value nFS5nE provided by the same FSS hypoth
esis. These controversial results call for additional studie

Our numerical estimates ofmb and gb rely upon series
expansions that are exact order by order. Each term of o
n is obtained from an exact counting ofcn(b) for each infi-
nite fractal lattice labeled byb. This means that the SAW
statistics is calculated taking into account the existence
lacunas of all length scales, capturing the full geometry,
contrast with MC results that suffer from finite-size effect

Finally, the series expansion method gives the most r
able results for Euclidean lattices. This gives confidence
the results based on the extension of this method for frac

The finite-size scaling predictions are based on a hypo
esis regarding the dependence of critical quantities onb that
has not been proved so far for the fractals families stud
here. On the other hand, our analytic arguments are
formed on a firm mathematical basis.

The results presented here leads to the conclusion tha
critical behavior of SAW’s on the SGS family of fracta
shows a uniform convergence to the Euclidean behavio
b→`.
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